

Отладочная плата

HELPER

Master-модуль

LDM-HELPER-K1273xxxxx

К1273ПА12Т

К1273ПА13Т

К1273ПА10Т

K1273HA044

СДЕЛАНО В РОССИИ

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 Основные технические характеристики модуля	4
2 Маркировка и опции	5
3 Описание и работа	6
3.1 Принципиальная электрическая схема	6
3.2 Питание и настройка перемычек	9
3.3 Комплектация	10
3.4 Монтажные чертежи	11
3.5 Трассировка по слоям	12
4 Эксплуатация, хранение и транспортирование	15

ВВЕДЕНИЕ

Отладочная плата *LDM-HELPER-K1273xxxxx* представляет собой master-модуль к мультиплатформенной системе проектирования семейства *HELPER*. Плата имеет 4 модификации, в зависимости от вида установленного ЦАП, с токовым выходом производства АО «НИИЭТ» К1273ПА12Т, К1273ПА13Т, К1273ПА10Т, К1273НА044 в металлокерамическом корпусе 4235.88-1. На плате установлена ПЛИС EP3C5E144I7N Altera, которая может выполнять две функции:

- 1) Выполнять роль буфера согласования уровней сигналов по напряжению между ЦАП и периферийных выводов модуля;
- 2) Осуществлять настройку и формирование выходного сигнала с ЦАП. Опционально на плате может быть установлен блок IQ модулятора (опция IQ).

Общий вид отладочной платы приведен на рисунке 1.

Рисунок 1. Общий вид отладочной платы LDM-HELPER-K1273xxxxx без IQ модулятора

1 Основные технические характеристики модуля

Параметр	Значение
Тип	Master-модуль
Архитектура ПЛИС	FPGA
Семейство ПЛИС	Cyclone III Altera
Маркировка ПЛИС	EP3C5E144I7N
Габаритные размеры (ДхШхВ)	130х74х8 мм
Макетное поле (шаг 2.54 мм)	Нет
Напряжение питания платы	+5 B±10%
Напряжение питания ПЛИС	3.3 B, 2.5 B, 1.2 B
Кол-во элементов LEs	5K
Пользовательские выводы модуля, шт.	36
Корпус ЦАП	4235.88-1

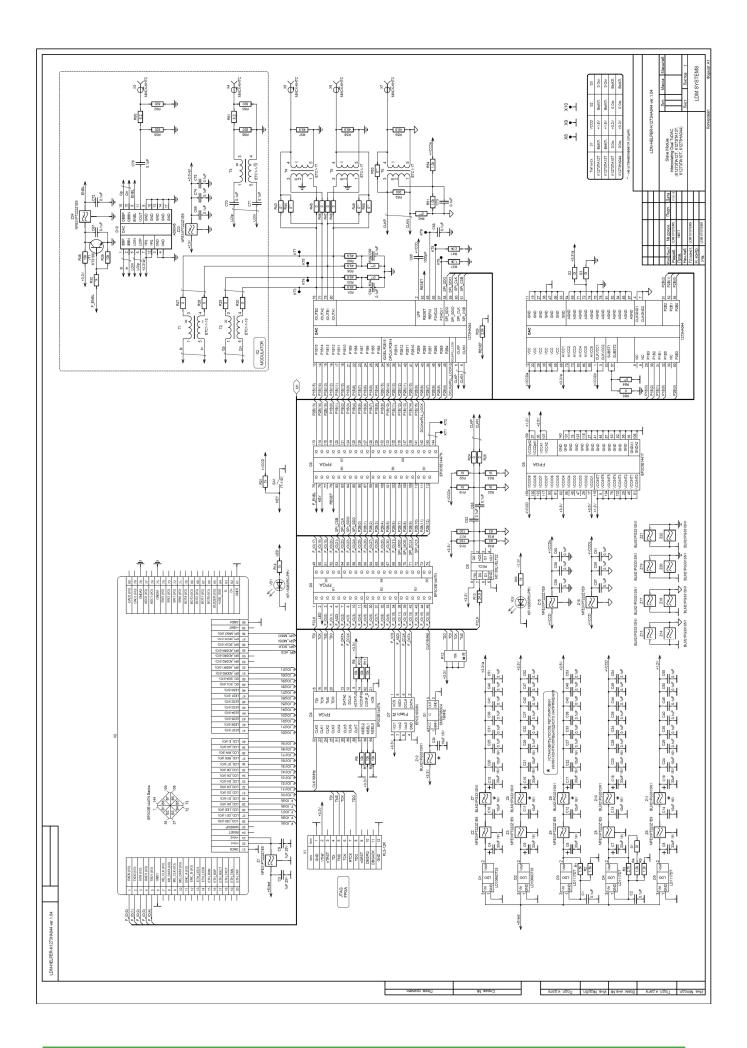
Попомотр	ЦАП			
Параметр	K1273ΠA12T	К1273ПА13Т	К1273ПА10Т	K1273HA044
Разрядность, бит	12	14	16	16
Максимальная частота				
обновления входных	160	160	160	160
данных, МГц				
Максимальная частота				
обновления	550	400	400	400
выходных данных, МГц				
Напряжение питания, В	1.8	1.8	3.3	3.3
SPI конфигурационный	1	1	1	1
порт, шт.	I	ľ	, I	ı
Внутренний синтезатор	+	+	_	_
тактовой частоты	•	'	_	_
Дифференциальные	2	2	2	2
токовые выходы, шт.	2			2
Ток выходов, мА	2÷20	2÷20	2÷20	2÷20
Внутренний источник				
опорного напряжения	+	+	+	+
1,2 B				

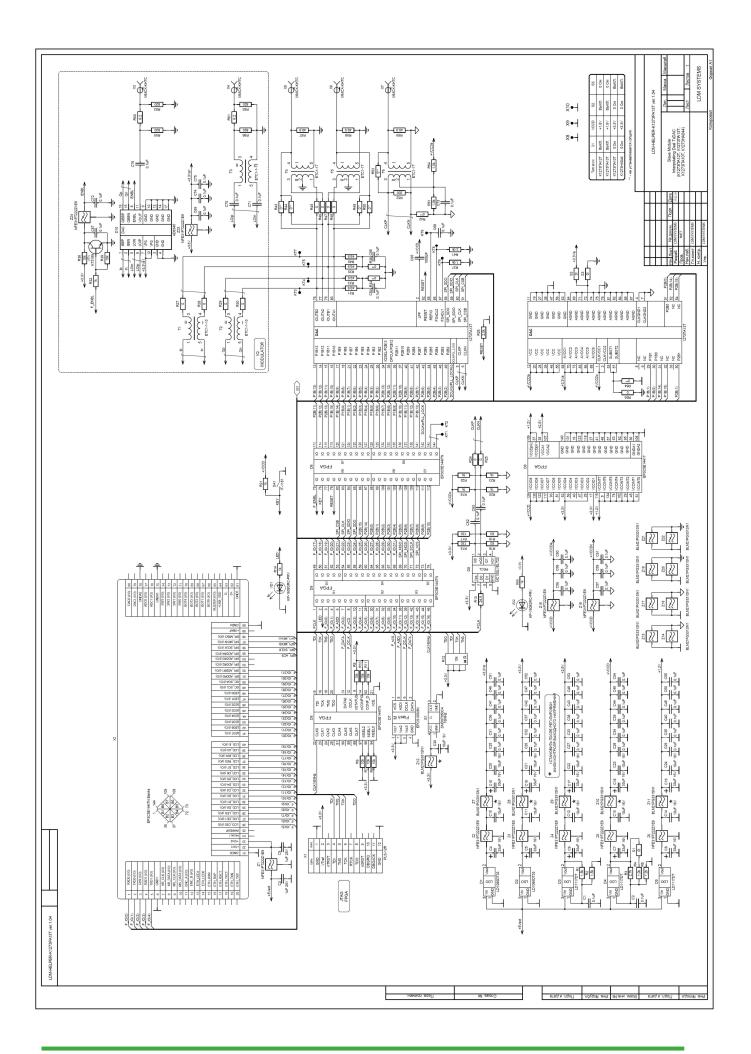
2 Маркировка и опции

Печатная плата имеет маркировку LDM-HELPER-K1273xxxxx.

В зависимости от установленной микросхемы ЦАП отладочная плата будет иметь следующие маркировки:

Тип ЦАП	Маркировка
K1273ΠA12T	LDM-HELPER-K1273PA12T
K1273ΠA13T	LDM-HELPER-K1273PA13T
K1273ΠA10T	LDM-HELPER-K1273PA10T
K1273HA044	LDM-HELPER-K1273HA044


При оснащении платы IQ модулятором к маркировке добавляется «-QI».


Hапример: LDM-HELPER-K1273PA12T-IQ

3 Описание и работа

3.1 Принципиальная электрическая схема

3.2 Питание и настройка перемычек

Питание отладочной платы LDM-HELPER-K1273xxxxx осуществляется от постоянного стабилизированного источника с напряжением +5 B, 0.5÷1 A (выводы Vin 22,23 X2). В таблице 1 приведены режимы включения джамперов, переключателей и их функции. Программирование платы производится через разъем X1 посредством загрузочных кабелей LDM-USB-Blaster или LDM-PB 2.01. Для удобства подключения загрузочного кабеля отдельно приобретается переходник JTAG IDC20 в PBS12 (ALTERA) (Рисунок 2).

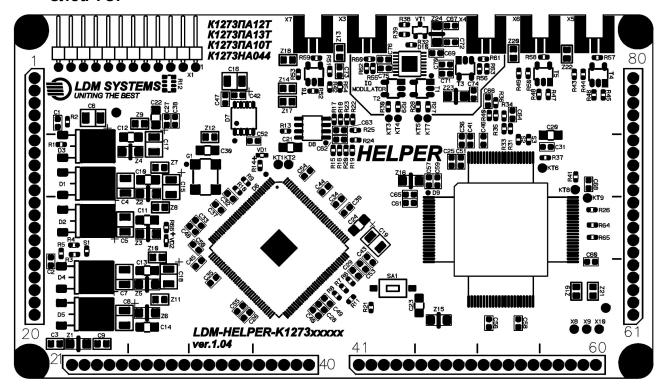
Перемычка S1 устанавливается на заводе-изготовителе и предназначена для формирования уровня напряжения питания ЦАП (снята – 1.8 В, установлена – 3.3 В).

Внимание! Изменение пользователем состояния перемычки S1 может привести к порче изделия и лишения гарантии.

Таблица 1 Режимы включения джамперов и их функции

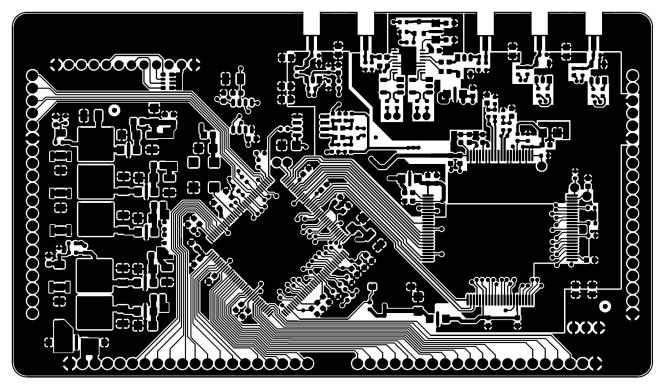
Джампер	Положение	Функционал
X1	-	Разъем для подключения загрузочного кабеля JTAG через переходник JTAG IDC20 в PBS12 (ALTERA)
X2	-	Межплатные разъемы модуля
X3	-	Разъем IQ-модулятора MMCX-KHTC типа
X4	-	Разъем IQ-модулятора MMCX-KHTC типа
X5	-	Разъем выхода ЦАП канал В ММСХ-КНТС типа
X6	-	Разъем выхода ЦАП канал А ММСХ-КНТС типа
X7	-	Разъем выхода ЦАП канал CLK MMCX-КНТС типа
SA1	-	Пользовательская кнопка

Рисунок 2. Вид переходника JTAG IDC20 в PBS12 (ALTERA) для подключения загрузочного кабеля LDM-USB-Blaster, LDM-PB 2.01 или аналогов

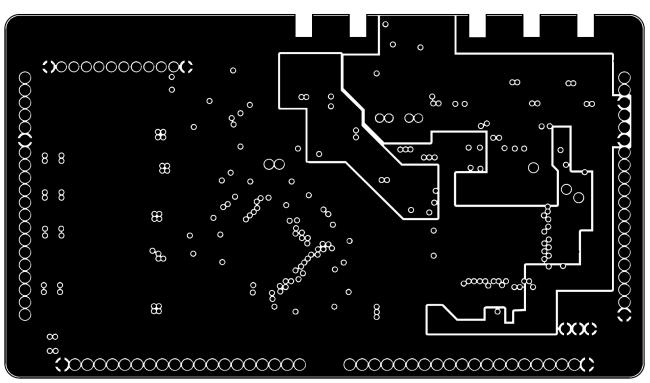

3.3 Комплектация:

- отладочная плата LDM-HELPER-HELPER-K1273xxxxx;
- CD-диск с описанием к плате, демонстрационными примерами и дополнительным программным обеспечением.

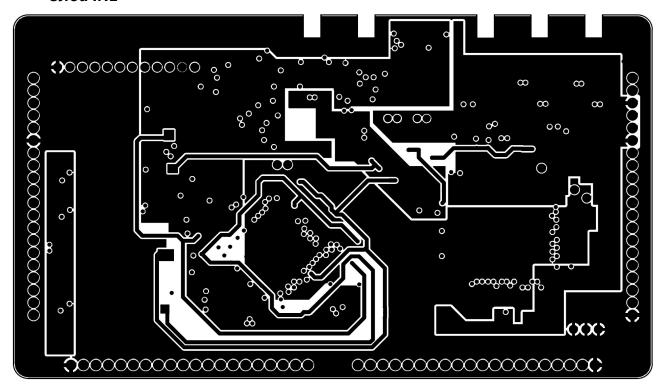
Переходник JTAG IDC20 в PBS12 (ALTERA) поставляется отдельно.


3.4 Монтажные чертежи

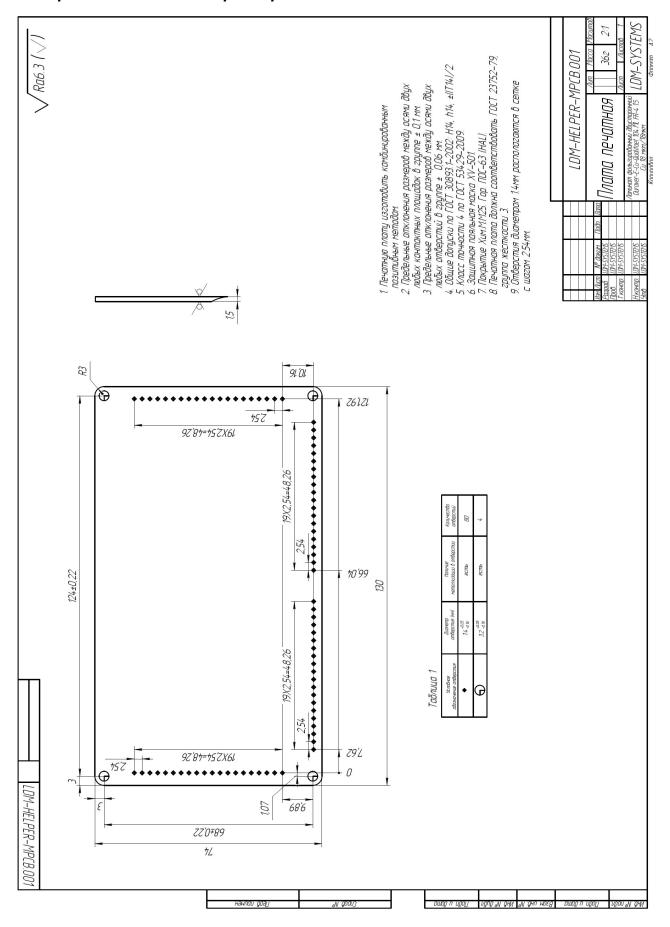
Слой ТОР



3.5 Трассировка по слоям


Слой ТОР


Слой IN1


Слой IN2

Слой ВОТТОМ

Присоединительные размеры

4 Эксплуатация, хранение и транспортирование

Требования к условиям эксплуатации:

Изделие при испытаниях, перевозке, хранении и эксплуатации не наносит вреда окружающей среде и здоровью человека. Сохраняет свои параметры во всем диапазоне рабочих температур от 0°C до +70°C в закрытом помещении с относительной влажностью воздуха не более 80 %, без конденсата, при изменении напряжения первичного источника электропитания в допустимых пределах. По электромагнитной совместимости изделие соответствует всем требованиям для аппаратуры данного класса.

Требования к условиям хранения:

Изделие должно храниться в складских помещениях, защищенных от воздействий атмосферных осадков, на стеллажах в упаковке производителя при отсутствии в воздухе паров кислот, щелочей и других веществ, вызывающих коррозию. Условия хранения изделия по ГОСТ 15150-69: температура воздуха от +5°C до +40°C, относительная влажность до 80% при температуре +25°C. Предельный срок хранения в указанных условиях – три года.

Требования к условиям транспортирования:

Транспортирование изделия разрешается в упаковке производителя всеми видами транспорта, за исключением негерметизированных отсеков самолета, без ограничения расстояния.

Транспортирование упакованных изделий может производиться в крытых вагонах и автомашинах, трюмах судов и герметичных кабинах самолетов при температуре воздуха от -20°C до +70°C. При любом способе транспортирования необходимо предусмотреть крепление ящика к кузову (платформе) транспортного средства с помощью крепежной арматуры.